A Primer on Capacity Mechanisms

Natalia Fabra

Universidad Carlos III de Madrid and CEPR

CET, DG-COMP, November 29, 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Electricity markets at a cross-road:

- Deployment of renewables needed for the low-carbon transition
- Renewables depress market prices
- Reduce profitability and increase risk of conventional technologies

Electricity markets at a cross-road:

- Deployment of renewables needed for the low-carbon transition
- Renewables depress market prices
- Reduce profitability and increase risk of conventional technologies

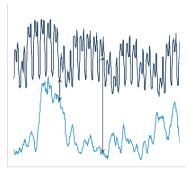


Figure 1: electricity demand (dark blue) and renewables (light blue)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Intermittency of renewables

Intermittency of renewables + non-storability of electricity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intermittency of renewables + non-storability of electricity + weak demand response

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Intermittency of renewables + non-storability of electricity + weak demand response + weak incentives to invest in back-up =

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Are the current arrangements well suited to induce adequate investments?

February 2010, Ofgem:

"There is a need for unprecedented levels of investment to be sustained over many years in difficult financial conditions and against a background of increased risk and uncertainty...Ofgem does not consider that leaving the current arrangements unaltered is in the interests of consumers."

The UK capacity market: demand

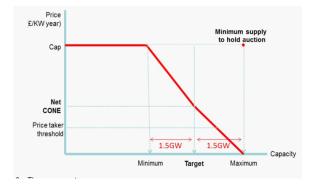


Figure 2: Demand in the UK capacity market

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The UK capacity market: results of first auction

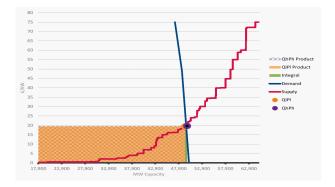


Figure 3: Result of 1st capacity auction in the UK (Dec. 2014)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A patchwork of solutions

- UK: centralized capacity market
- France: decentralized capacity market

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Germany: strategic reserves
- Spain: capacity payments
- Italy and Ireland: tenders
- ▶

A patchwork of solutions

- UK: centralized capacity market
- France: decentralized capacity market
- Germany: strategic reserves
- Spain: capacity payments
- Italy and Ireland: tenders

▶

2016 EC Sector Inquiry on Capacity Mechanisms

This Paper

Main Objective: Simple framework to assess

need, effect and design of capacity mechanisms

Issues:

- How to ensure security of supply at least cost?
- How do capacity payments affect energy markets?
- What is the optimal capacity target?
- And the optimal policy to achieve it?
- Should all plants receive capacity payments, or only the new ones?

- What if there is market power in the capacity market?
- Capacity payments plus financial commitments?

Fundamental interaction: investment and market power

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- market power determines rents for investors...
-but also affects marginal incentives

- Fundamental interaction: investment and market power
 - market power determines rents for investors...
 -but also affects marginal incentives
- Understanding the trade-off is key for....
 - diagnosing market failures
 - designing regulatory and market-based instruments

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Fundamental interaction: investment and market power
 - market power determines rents for investors...
 -but also affects marginal incentives
- Understanding the trade-off is key for....
 - diagnosing market failures
 - designing regulatory and market-based instruments
- Two approaches:
 - energy-only market: free-entry and competitive pricing

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

this paper: endogenous market power

- Fundamental interaction: investment and market power
 - market power determines rents for investors...
 -but also affects marginal incentives
- Understanding the trade-off is key for....
 - diagnosing market failures
 - designing regulatory and market-based instruments
- Two approaches:
 - energy-only market: free-entry and competitive pricing
 - this paper: endogenous market power

Scarcity pricing leaves free-way to market power

Capacity payments needed to restore missing money without reintroducing market power

Roadmap

- Model description
- Benchmarks:
 - welfare maximizing capacity
 - the energy-only market paradigm
- Equilibrium investment
- Capacity mechanisms
- Further issues:
 - payments for new capacity only?
 - market power in the capacity market

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- reliability options
- Conclusions

Model Description

Firms, costs and demand

- n firm compete to generate electricity
- Zero production costs up to the firm's capacity, k_i , i = 1, ..., n

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Unit cost of capacity, c > 0
- Demand θ is uniformly distributed on [0, 1]
- Demand is price- inelastic; prices capped at P

Model Description

Firms, costs and demand

- n firm compete to generate electricity
- Zero production costs up to the firm's capacity, k_i , i = 1, ..., n

- Unit cost of capacity, c > 0
- Demand θ is uniformly distributed on [0, 1]
- Demand is price- inelastic; prices capped at P

Timing

- 1. Simultaneous capacity choices $(k_1, ..., k_n)$
- 2. Capacity choices are publicly observed
- 3. Demand θ is revealed
- 4. Simultaneous price offers (bids for entire capacity)
- 5. Market cleared and payoffs realized

- Consumers receive gross utility $v \ge P$ per unit consumed
- ► Expected welfare as a function of aggregate capacity K,

$$W = v \int\limits_{0}^{K} heta d heta + v \int\limits_{K}^{1} K d heta - cK$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Consumers receive gross utility $v \ge P$ per unit consumed
- Expected welfare as a function of aggregate capacity K,

$$W = v \int\limits_{0}^{K} heta d heta + v \int\limits_{K}^{1} K d heta - cK$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Maximization w.r.t. K gives

$$\frac{\partial W}{\partial K} = v \left[1 - K \right] - c = 0$$

- Consumers receive gross utility $v \ge P$ per unit consumed
- Expected welfare as a function of aggregate capacity K,

$$W = v \int\limits_{0}^{K} heta d heta + v \int\limits_{K}^{1} K d heta - cK$$

Maximization w.r.t. K gives

$$\frac{\partial W}{\partial K} = v \left[1 - K \right] - c = 0 \Rightarrow K^{FB} = 1 - \frac{c}{v}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Consumers receive gross utility $v \ge P$ per unit consumed
- Expected welfare as a function of aggregate capacity K,

$$W = v \int\limits_{0}^{K} heta d heta + v \int\limits_{K}^{1} K d heta - cK$$

Maximization w.r.t. K gives

$$\frac{\partial W}{\partial K} = v \left[1 - K \right] - c = 0 \Rightarrow K^{FB} = 1 - \frac{c}{v}$$

Trade-off: value of extra consumption (v) versus investment cost (c)
 Some rationing is optimal K^{FB} < 1

Assumptions:

- free entry \Rightarrow zero profits
- no market power \Rightarrow prices=MC if excess capacity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Assumptions:

- free entry \Rightarrow zero profits
- no market power \Rightarrow prices=MC if excess capacity
- Profits = scarcity rents minus investment costs

$$\pi_i = P \int_{nk}^1 k d\theta - ck$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions:

- free entry \Rightarrow zero profits
- no market power \Rightarrow prices=MC if excess capacity
- Profits = scarcity rents minus investment costs

$$\pi_i = P \int_{nk}^{1} k d\theta - ck$$

In equilibrium, free entry implies:

$$k^* = rac{1}{n} \left(1 - rac{c}{P}
ight)$$
 $\mathcal{K}^* = nk^* = 1 - rac{c}{P} \leq \mathcal{K}^{FB}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assumptions:

- free entry \Rightarrow zero profits
- no market power \Rightarrow prices=MC if excess capacity
- Profits = scarcity rents minus investment costs

$$\pi_i = P \int_{nk}^{1} k d\theta - ck$$

In equilibrium, free entry implies:

$$k^* = rac{1}{n}\left(1-rac{c}{P}
ight)$$
 $\mathcal{K}^* = nk^* = 1-rac{c}{P} \leq \mathcal{K}^{FB}$

- Price caps create under-investment
- ► Removing price caps allows for efficient investment and max. CS

Equilibrium investment under market power

Dominant firm-fringe model: [robust; Fabra et al. (2006)]

• firms i = 2, ..., n bid at marginal cost (up to fringe's capacity k_F)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

firm 1 maximizes profits over residual demand

Equilibrium investment under market power

Dominant firm-fringe model: [robust; Fabra et al. (2006)]

- firms i = 2, ..., n bid at marginal cost (up to fringe's capacity k_F)
- firm 1 maximizes profits over residual demand
- Energy market profits:

$$\pi_{1} = P \int_{k_{F}}^{k_{F}+k_{1}} [\theta - k_{F}] d\theta + P \int_{k_{F}+k_{1}}^{1} k_{1} d\theta - ck_{1}$$
$$\pi_{f} = P \int_{k_{F}}^{1} k_{f} d\theta - ck_{f}, \text{ for } f = 2, .., n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Dominant firm: only benefits from capacity expansions when $\theta > K$

$$rac{\partial \pi_1}{\partial k_1} = P\left[1 - K
ight] - c$$

• **Dominant firm**: only benefits from capacity expansions when $\theta > K$

$$\frac{\partial \pi_1}{\partial k_1} = P\left[1 - K\right] - c$$

$$K^* = 1 - \frac{c}{P} \leq K^{FB}$$

Dominant firm: only benefits from capacity expansions when $\theta > K$

$$\frac{\partial \pi_1}{\partial k_1} = P\left[1 - K\right] - c$$

$$K^* = 1 - \frac{c}{P} \le K^{FB}$$

Fringe firms: $k_f \uparrow$ has additional effects

Dominant firm: only benefits from capacity expansions when $\theta > K$

$$rac{\partial \pi_1}{\partial k_1} = P\left[1 - K
ight] - c$$

$$K^* = 1 - rac{c}{P} \le K^{FB}$$

- Fringe firms: $k_f \uparrow$ has additional effects
 - (+) produces at capacity more often
 - (-) greater incidence of MC pricing
 - In equilibrium, both effects cancel out: symmetric capacities

Profits, Consumer Surplus and Welfare

Profits = market power rents (scarcity rents = investment costs)

$$\begin{aligned} \pi_1^* &= & P \int_{(n-1)k^*}^{nk^*} \left[\theta - (n-1) \, k^* \right] d\theta > 0 \\ \pi_f^* &= & \int_{(n-1)k^*}^{nk^*} k^* d\theta > 0 \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Profits, Consumer Surplus and Welfare

Profits = market power rents (scarcity rents = investment costs)

$$\pi_{1}^{*} = P \int_{(n-1)k^{*}}^{nk^{*}} [\theta - (n-1)k^{*}] d\theta > 0$$

$$\pi_{f}^{*} = \int_{(n-1)k^{*}}^{nk^{*}} k^{*} d\theta > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• CS maximized at some $P^* \in (0, v)$

trade-off greater consumption- higher prices

Welfare maximized at P* = v [*caveats]

Removing price caps does not always maximize welfare

Involuntary rationing:

 \blacktriangleright Probability of a system blackouts: γ

$$W = v \int_{0}^{K} \theta d\theta + (1 - \gamma) v \int_{K}^{1} K d\theta - cK.$$

Optimal capacity

$$\mathcal{K}^{FB} = \left\{ \begin{array}{ccc} 1 & \text{if} & \gamma \geq 1 - \frac{c}{v} \\ 1 - \frac{1}{1 - \gamma} \frac{c}{v} & \text{if} & \gamma < 1 - \frac{c}{v} \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Removing price caps does not always maximize welfare

Involuntary rationing:

• Probability of a system blackouts: γ

$$W = v \int_{0}^{K} \theta d\theta + (1 - \gamma) v \int_{K}^{1} K d\theta - cK.$$

Optimal capacity

$$\mathcal{K}^{\textit{FB}} = \left\{ egin{array}{ccc} 1 & ext{if} & \gamma \geq 1 - rac{c}{v} \ 1 - rac{1}{1 - \gamma} rac{c}{v} & ext{if} & \gamma < 1 - rac{c}{v} \end{array}
ight.$$

K^{FB} increasing in γ and greater than 1 - (c/v)
 Full insure against blackouts (K^{FB} = 1) if γ very high

Removing price caps does not always maximize welfare

Involuntary rationing:

Probability of a system blackouts: γ

$$W = v \int_{0}^{K} heta d heta + (1 - \gamma) v \int_{K}^{1} K d heta - cK.$$

Optimal capacity

$$\mathcal{K}^{\mathcal{FB}} = \left\{ egin{array}{ccc} 1 & ext{if} & \gamma \geq 1 - rac{c}{v} \ 1 - rac{1}{1 - \gamma} rac{c}{v} & ext{if} & \gamma < 1 - rac{c}{v} \end{array}
ight.$$

- \mathcal{K}^{FB} increasing in γ and greater than 1 (c/v)
- \blacktriangleright Full insure against blackouts (${\cal K}^{FB}=1$) if γ very high

Downward sloping demand:

Removing price caps reduces efficient consumption

Capacity Mechanisms

- Capacity payments: pay *sk* regardless of firms' production.
 - price regulation: regulator sets s and investors choose K
 - quantity regulation: regulator chooses K, and market sets s

Capacity Mechanisms

- Capacity payments: pay sk regardless of firms' production.
 - price regulation: regulator sets s and investors choose K
 - quantity regulation: regulator chooses K, and market sets s
- Investment cost net of capacity payments becomes c' = (c s),

$$\mathcal{K}^* = 1 - rac{(c-s)}{P} \Rightarrow s = c - (1 - \mathcal{K}^*) P$$

• To induce K^* , pay firms investment costs net of scarcity rents

Capacity Mechanisms

- Capacity payments: pay sk regardless of firms' production.
 - price regulation: regulator sets s and investors choose K
 - quantity regulation: regulator chooses K, and market sets s
- Investment cost net of capacity payments becomes c' = (c s),

$$\mathcal{K}^* = 1 - rac{(c-s)}{P} \Rightarrow s = c - (1 - \mathcal{K}^*) P$$

▶ To induce K^{*}, pay firms investment costs net of scarcity rents

To induce first-best capacity

$$K^{FB} = 1 - \frac{c}{v} \Rightarrow s = c - \frac{c}{v}P$$

The optimal policy: price-caps and capacity payments

For given P, consumer surplus is maximized at

$$s^* = c - rac{cn^2 + (2n-1)P}{vn^2 + (2n-1)P}P$$

s* is lower if market power: decreasing P and increasing in v
 s* is higher if K^{FB} higher: increasing in v

The optimal policy: price-caps and capacity payments

For given P, consumer surplus is maximized at

$$s^* = c - rac{cn^2 + (2n-1)P}{vn^2 + (2n-1)P}P$$

- s^* is lower if market power: decreasing P and increasing in v
- s^* is higher if K^{FB} higher: increasing in v
- If no price caps (P = v), charge an entry free $s^* < 0$
 - the energy-only market paradigm is sub-optimal (P = v; s = 0)

The optimal policy: price-caps and capacity payments

For given P, consumer surplus is maximized at

$$s^* = c - rac{cn^2 + (2n-1)P}{vn^2 + (2n-1)P}P$$

- s^* is lower if market power: decreasing P and increasing in v
- ▶ s^{*} is higher if K^{FB} higher: increasing in v
- If no price caps (P = v), charge an entry free $s^* < 0$
 - the energy-only market paradigm is sub-optimal (P = v; s = 0)
- ▶ **Optimal policy:** $s^* = c$ and P = 0 [*caveat: asymmetric info]
 - But too much capacity $K^* = 1 > K^{FB}$: pay s^* only up to K^{FB}

Support for new capacity only?

- Support to the new capacity only
 - examples: strategic reserves, tenders for new capacity
- Support to new and old capacity
 - examples: capacity markets, decentralized obligation schemes

Support for new capacity only?

- Support to the new capacity only
 - examples: strategic reserves, tenders for new capacity
- Support to new and old capacity
 - examples: capacity markets, decentralized obligation schemes
- Aggregate capacity is the same under both mechanisms
 - investment depends on marginal profits, not on profit levels

Support for new capacity only?

- Support to the new capacity only
 - examples: strategic reserves, tenders for new capacity
- Support to new and old capacity
 - examples: capacity markets, decentralized obligation schemes
- Aggregate capacity is the same under both mechanisms
 - investment depends on marginal profits, not on profit levels
- CS higher when only new capacity receives support
 - Regulator chooses higher $s \Rightarrow$ capacity closer K^{FB}
 - Old capacity loses profits but profit loss < capacity payments

- Fringe takes s as given, but the dominant firm does not
- Market clearing for capacity target K :

$$s = c - (1 - K)P + P \frac{n}{n-1}\left(\frac{K}{n} - k_1\right)$$

higher s if dominant firm withholds capacity

- Fringe takes s as given, but the dominant firm does not
- Market clearing for capacity target K :

$$s = c - (1 - K)P + P \frac{n}{n-1}\left(\frac{K}{n} - k_1\right)$$

- higher s if dominant firm withholds capacity
- ▶ in equilibrium, capacity withholding $k_1^* = K/(n+1) < K/n$
- higher capacity payment s*

- Fringe takes s as given, but the dominant firm does not
- Market clearing for capacity target K :

$$s = c - (1 - K)P + P \frac{n}{n-1}\left(\frac{K}{n} - k_1\right)$$

- higher s if dominant firm withholds capacity
- ▶ in equilibrium, capacity withholding $k_1^* = K/(n+1) < K/n$
- higher capacity payment s*

Impact of market power on regulator's choices:

- Optimal capacity is lower
- Consumers worse off (price increase + capacity reduction)

- Fringe takes s as given, but the dominant firm does not
- Market clearing for capacity target K :

$$s = c - (1 - K)P + P \frac{n}{n-1}\left(\frac{K}{n} - k_1\right)$$

- higher s if dominant firm withholds capacity
- ▶ in equilibrium, capacity withholding $k_1^* = K/(n+1) < K/n$
- higher capacity payment s*

Impact of market power on regulator's choices:

- Optimal capacity is lower
- Consumers worse off (price increase + capacity reduction)
- Downward sloping demand for capacity would mitigate market power

Reliability options

- Option price (s) and strike price (f)
 - Regulator chooses f and s is determined through an auction

Consumers pay s in exchange of option to buy electricity at f

Reliability options

- Option price (s) and strike price (f)
 - Regulator chooses f and s is determined through an auction
- Consumers pay s in exchange of option to buy electricity at f
- Firms' profits:

$$\pi = \begin{cases} pq - (c - s) k & \text{if } p \le f \\ fk - (c - s) k - p(k - q) & \text{if } p \ge f \end{cases}$$

Reliability options

- Option price (s) and strike price (f)
 - Regulator chooses f and s is determined through an auction
- Consumers pay s in exchange of option to buy electricity at f
- Firms' profits:

$$\pi = \begin{cases} pq - (c - s)k & \text{if } p \le f \\ fk - (c - s)k - p(k - q) & \text{if } p \ge f \end{cases}$$

- Market power is mitigated:
 - f acts as a plant-specific price-cap
 - optimal to set f = 0 at marginal cost
- Availability incentivized:
 - -p(k-q) acts as endogenous penalty for not being available

Conclusions

Scarcity pricing optimal only if free entry and no market power

- removing price caps gives free-way to market power
- Plus unpriced externality: less involuntary rationing
- Maximization of CS: price caps + capacity payments

Further issues:

- Targeted to new capacity: welfare-enhancing potential
- Concerns about market power in capacity markets
- Reliability options mitigate market power: strike prices close to MC
- Demand response reduces need of capacity support?...yet to be seen!

Thank You!

questions? comments?

natalia.fabra@uc3m.es

eco.uc3m.es/nfabra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?